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Higher approximations in boundary-layer theory 
Part 1. General analysis 

By MILTON VAN DYKE 
Department of Aeronautics and Astronautics, Stanford University, California 

(Received 5 April 1962) 

Prandtl’s boundary-layer theory is embedded as the first step in a systematic 
scheme of successive approximations for finding an asymptotic solution for 
viscous flow at large Reynolds number. The technique of inner and outer expan- 
sions is used to treat this singular-perturbation problem. Only analytic semi- 
infinite bodies free of separation are considered. The second approximation is 
analysed in detail for steady laminar flow past plane or axisymmetric solid bodies. 
Attention is restricted to low speeds and small temperature changes, so that the 
velocity field is that for an incompressible fluid, the temperature field being 
calculated subsequently. The additive effects are distinguished of longitudinal 
curvature, transverse curvature, external vorticity, external stagnation enthalpy 
gradient, and displacement speed. The effect of changing co-ordinates is 
examined, and the behaviour of the boundary-layer solution far downstream 
discussed. Application to specific problems will be made in subsequent papers. 

1. Introduction 
It has been recognized for some time that Prandtl’s boundary-layer theory 

yields only the first term in an asymptotic solution of the Navier-Stokes equa- 
tions for large Reynolds number. However, attempts to  calculate further terms 
in the asymptotic expansion have been fragmentary. Prandtl himself (1935) 
suggested how the boundary layer on a flat plate might be corrected for the effect 
of displacement thickness. The effect of longitudinal curvature of the surface was 
analysed in a special case by Murphy (1953), and that of transverse curvature on 
a body of revolution by Seban & Bond (1951). The effect of external vorticity was 
pointed out by Ferri & Libby (1954). Ovchinnikov (1960) has considered the 
effect of an external gradient of total enthalpy. 

Each of these is a secondary effect, of relative order R-4, where R is an appro- 
priate Reynolds number. Although each has received further attention, the 
results remain isolated, unco-ordinated, sometimes erroneous, and in two cases 
the subject of prolonged controversies. The aim of the present work is to 
provide a unified theory of higher-order effects, with emphasis on the second 
approximation. 

In  a singular-perturbation problem of this sort, higher approximations are 
most efficiently found by the so-called method of inner and outer expansions. 
This technique has been extensively developed by Kaplun (1954), Lagerstrom & 
Cole (1955) and their colleagues a t  Caltech, and others. (See Lagerstrom 1957; 
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Erdelyi 1961 .) Two complementary asymptotic expansions are constructed 
simultaneously, and matched in their overlap region of common validity. For 
viscous flows at low Reynolds number, this procedure has been discussed by 
Kaplun & Lagerstrom (1957), and applied to the circular cylinder and sphere by 
Kaplun (1957) and Proudman & Pearson (1957). The corresponding analysis for 
high Reynolds number is given here. The general theory is developed in the 
present Part 1, application being made to leading edges in Part 2, and to the 
parabolic cylinder in a uniform stream in Part 3. 

2. Formulation of problem 
2.1. TheJEuid and body 

Consider steady laminar flow of a viscous fluid. For simplicity let the flow be 
incompressible. (The extension to compressible flow is outlined in Van Dyke 
1962.) We adopt the broadest possible interpretation of this term, so that low- 
speed flow of a gas as well as of a liquid is admitted. We require only that the 
momentum and continuity equations be uncoupled from the energy equation. 
That is the case if the Mach number is low and the relative variation in tempera- 
ture small, so that the heat added by dissipation and by conduction is slight. Then 
the density is sensibly constant, as are the transport properties. The velocity and 
pressure field is governed by the Navier-Stokes equations for an incompressible 
fluid. The temperature field can subsequently be calculated from the energy 
equation, which is linear with non-constant coefficients depending upon the 
velocity field. 

For simplicity let the motion be either plane (but not necessarily symmetric) 
or axisymmetric, and the body solid. The appropriate solution of the inviscid 
(Euler) equations to describe the limiting flow at infinite Reynolds number is not 
known for separated flows, and has a complicated mathematical description for 
unseparated flow past finite bodies. Also, serious difficulties arise for non-analytic 
shapes (see Goldstein 1960, ch. 8). Therefore we consider only unseparated flow 
past a semi-infinite body described by an analytic curve. The surface temperature 
condition is also assumed analytic. 

2.2. Upstream conditions 
Suppose that a well-posed problem has been set for the Navier-Stokes equations, 
for which we seek the asymptotic form of the solution for large Reynolds number. 
Then the flow upstream is prescribed, and in general satisfies the viscous flow 
equations. This requirement is satisfied trivially in the classical case of a uniform 
parallel stream or other irrotational motion, because any potential flow satisfies 
the Navier-Stokes equations. However, if the oncoming stream contains vorti- 
city, a solution of the Euler equations does not in general satisfy the Navier- 
Stokes equations. It does so, however, in special cases, including the useful ones 
of plane flow with constant vorticity and axisymmetric flow with vorticity pro- 
portional to the radius. 

This general situation permits the oncoming stream (even if i t  is irrotational) 
to  depend upon the Reynolds number. This would occur, for example, for a 
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slender body in a wind tunnel whose free stream would vary slightly with the 
thickness of the wall boundary layers. However, for simplicity we assume that 
conditions far upstream are independent of Reynolds number. The oncoming 
stream is then represented by a solution of the inviscid equations. 

2.3. Dimensionless equations and boundary conditions 

It is convenient to refer all lengths to a typical body dimension L (e.g. its nose 
radius), speeds and temperatures to characteristic reference values U, and T,, and 
pressures to pU:. Then under our assumption of constant fluid properties the 
Navier-Stokes equations, which govern the velocity and pressure field, become 

divq = 0, (2.1) 

(2 .2 )  (grad 9). q + gradp = - R-l curl (curl 4). 

The notation is standard, R = U, Lp/p being the characteristic Reynolds number. 
Variations in temperature can then be calculated from the energy equation 

with the fluid properties taken constant so that it is linear: 

1 
UR q.gradT--V2T = m2 

Here u = pcp/k is the Prandtl number, and def q the deformation tensor, grad g 
plus its transpose (Lagerstrom 1962). The factor m2 is given by 

m2 = U:/c,T,, (2-4) 

which is (y  - 1) M: for a perfect gas, M, being the characteristic Mach number 
based upon U, and T,. For a liquid the thermal expansion parameter 

(a 1% 1% T)p 
is normally small; in any case m2 is so small that the right-hand side of (2.3) is 
ordinarily neglected. It will therefore be retained only for a perfect gas, for which 
we can henceforth set (a log p/a log T ) p  = - 1. 

These equations are accurate if both m2 and the imposed relative temperature 
difference AT are small. More precisely, a perturbation analysis (following 
Lagerstrom 1962) shows that they give the temperature correctly including terms 
of order m2 and AT, although the velocity and pressure are correct only to order 
unity. 

An alternative form of the energy equation is preferable, which involves 
stagnation enthalpy in so far as possible. First forming the inner product of q and 
(2.2) gives the kinematic energy equation 

q .grad ( p  + +q2) = R-lq . V2q. 

Then adding m2 times this to (2.3) yields 
(2.5) 

q .grad (T + +m2q2) -R-1V2(a-1T + Bm2q2) = m2R-l(grad 9). (grad q)*, (2.6) 

where the asterisk denotes the transpose, with m2 = 0 for a liquid. 
The pressure can be eliminated from the momentum equation by taking its 

curl, which leaves an equation for the vorticity vector curlq. For plane or 
11-2 
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axisymmetric flow the vorticity has only a component of magnitude w normal to 
the plane of flow. Then the vorticity equation reduces to 

1 rjq.grad(;) = %div 1 [?grad(rjo) 1 , 

where r is the distance from the axis in axisymmetric flow, a n d j  = 0 for plane 
flow and j = 1 for axisymmetric flow. Henceforth all vector operations are 
restricted to the plane of flow, and in particular div must here be the two-dimen- 
sional divergence operator. The two scalar equations (2.5) and (2.7) are equi- 
valent to  (2.2). 

The boundary condition at a solid body is q = 0 if slip is neglected. The condi- 
tion on temperature may prescribe its surface value, require that its normal 
gradient vanish (for an insulated body), or the like. Far upstream the flow is to 
approach prescribed (possibly non-uniform) velocity and temperature fields Qm 
and T,. 

2.4. Orthogonal co-ordinates and stream function 

In  specific problems one usually introduces orthogonal curvilinear co-ordinates 
( 6 , ~ )  in the plane of flow, with corresponding velocity components (u, v). The 
length element dl in space is then given by 

where 4 is the third Cartesian co-ordinate for plane flow and the azimuthal angle 
for axisymmetric flow. 

The preceding equations are readily expressed in these co-ordinates using 
standard vector relations. In  particular, the continuity equation (2.1) becomes 

- a (rje, u)  + - a (rje, v) = 0. 

a t  a7 
This is satisfied by introducing the stream function $ in the usual way: 

a$py = rje, U ,  a$pt = - rje, v. (2.10) 

Then the scalar vorticity is given by 

(2.11) 

We make particular use of the orthogonal co-ordinates ( s ,n )  indicated in 
figure 1. Here n is the distance normal to the surface of the body, and s the 
distance to  the foot of the normal measured along the surface from, say, the 
stagnation point. (These co-ordinates are ambiguous away from the surface of a 
concave body, but that is of no concern because they will be used only arbitrarily 
near the surface.) Let K(S)  be the curvature of the body in the plane of flow 
(positive for a convex shape) and, for use in axisymmetric flow, B(s) the angle 
between the axis and the tangent to  the meridian curve at any point and r,,(s) the 
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distance of the point from the axis. Any one of these functions determines the 
other two according to 

Then (2.8) specializes to 
sin8 = r;, COSB = - K r &  (2.12) 

dZ2 = (1 + K n ) 2 d s 2 + d n 2 + ( ~ ~ + n c o s 8 ) ~ i ~ ~ ~ .  (2.13) 

V 

FIGURE 1. Co-ordinates for boundary layer. 

3. Outer and inner expansions 
3.1. Outer expansion 

As the Reynolds number R increases, the motion at any fixed point away from 
the surface approaches an inviscid flow. Kaplun (1954) and Lagerstrom & Cole 
(1955) call this the Euler or outer limit. Repeated application of the outer limit 
process, in conjunction with an appropriate sequence of functions of R, produces 
an asymptotic expansion for large R, the outer expansion. Under our restrictions 
(to an analytic semi-infinite body free of separation) the asymptotic sequence is 
believed to consist of negative half-powers of R. The outer expansion therefore 

q(x; R) N Ql(x)+R-*Q,(x)+ ..., has the form 

p(x; R) - P ~ ( x )  + R-*Ps(x) + . . . , (3.1) I T(x ;  R)  - T,(x)+R-*TZ(x)+ .... 
Likewise, the components of q in any co-ordinate system, the vorticity, and the 
stream function have the outer expansions 

I 
I 

u(x; R) - U,(x) + R+U,(X) + . . . , 
v(x; R )  N V,(x)+R-q(x)+ ..., 
w(x; R) N Qz,(x) + R - Q ( x )  + . . . , 
$(X; R) - \ fP1(~)+R-*Yz(~)+.. . .  

It is implied that the functions Q1, Qz,  etc. and their derivatives are all of order 
unity. 
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Substituting these expansions into the equations of motion and equating like 
powers of R yields equations for the successive outer approximations. Thus (2 .  I), 
(2.2) and (2.6) give for the first approximation 

divQ, = 0,  

0,. grad Q1 +grad Fi = 0, 

Q1. grad (T, + +m2Q;) = 0,  

(3 .3a)  

(3.3b) 

(3.3c) 

which are the Euler equations for the basic inviscid flow, and for the second 
approximation divQ, = 0,  (3 .4a )  

(3.4b) Q1. grad Qz + Qz . grad Q, + grad P2 = 0, 

0,. grad ( T2 + m2Q1. Qz) + Q2. grad (q + $m2Q4) = 0, (3.4c) 

which are the small-perturbation form of the Euler equations. Viscous terms 
appear in the outer equations beginning only with the third approximation. 

The outer expansion is invalid at  the body surface, where the no-slip condition 
must be given up. In  fact, it appears that all boundary conditions at  the body 
must be dropped except that on the normal component of velocity in the first 
approximation : V , = O  a t  n = 0 .  (3.5) 

3.2. Integrals of outer equations 
Substituting the outer expansions into the kinematic energy equation (2 .5)  and 
vorticity equation (2 .7)  gives as an alternative to the first-order momentum 
equation (3 .3b)  

(3.6) 

(3.7) 

Q1. grad (Pi + iQ4) = 0,  
Q, . grad (st,/rj) = 0. 

Each of (3 .3c ) ,  (3 .6 )  and (3 .7)  expresses conservation along streamlines of a flow 
quantity, which is therefore a function only of Y,. The three functions are not 
independent, however, being connected by the Bernoulli equation (which is a 
consequence of the Euler equations (3 .3) )  : 

st,/rj = - d(P, + &Q;)/dY,. (3.8) 

Hence the first-order outer problem has the three first integrals 

( 3 . 9 ~ )  

(3.9b) 

(3 .9c)  

The Bernoulli function B, and stagnation enthalpy function H, are to be evaluated 
from the upstream conditions. 

Similarly, for the second approximation one obtains the perturbation forms of 
(3 .6)  and (3 .7 ) ,  and the first integrals 

P2 + Qi - 0 2  = Y2 B;V"i) + B2(yJ, (3 .10a)  

Q2/rj = -Y2Bc(Y1) -BL(Y,), (3.10b) 

T2+m2Q,. Qz = y2fli(yJ+ HZ(Y1). ( 3 . 1 0 ~ )  
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The first terms on the right express (through Taylor series expansion about the 
basic inviscid flow) the facts that stagnation pressure and enthalpy are actually 
conserved along perturbed rather than basic streamlines, and the second terms 
allow for small variations of those quantities with Reynolds number. However, 
we have assumed for simplicity that the oncoming stream is independent of 
Reynolds number, which means that we take B, = H, = 0. 

3.3 First and second outer problems 

One usually solves the outer problem using the stream function in orthogonal 
co-ordinates. A n  equation for Y, alone is obtained from (3 .9b )  with the aid of 
(2.11). Thus the problem for the basic inviscid flow becomes 

Y, = 0 on the body, 
y1 y 1 U 3 ( 6 7  7) 

(3 .11a)  

(3.11 b)  

(3.1 1 c )  

where B, and Ylm are known functions. This is a properly set problem for an 
elliptic differential equation. The equation is linear if B, is a linear function of its 
argument. The solution for Y, provides the velocity field, and the pressure and 
temperature are then given by the integrals (3 .9a)  and ( 3 . 9 ~ ) .  

For the second approximation (3.10b) gives, with B, = 0, the differential 

(3.12) 

This is also elliptic but, as usual in perturbation schemes, linear with coefficients 
depending on the basic flow. The only applicable boundary condition is that the 
velocity due to Y, must vanish upstream. The necessary additional boundary 
condition (3.27 b)  will be found by matching with the inner solution. The pressure 
and temperature perturbations are found from (3 .10a)  and ( 3 . 1 0 ~ ) .  

3.4. Outer flow near surface 

In classical boundary-layer theory the outer flow enters only through the values 
of velocity (or pressure) and temperature that it predicts at the surface. In  higher 
approximations, normal derivatives of the outer solution at the surface are also 
required. We consider the quantities needed for the second approximation. 

We use henceforth the co-ordinates (s, n)  of figure 1. The basic inviscid flow 
provides the surface speed Ul(s, 0 ) ,  and then (3 .9a )  and ( 3 . 9 ~ )  give 

&(s, 0)  = B,(O) - +U?(s, 0 )  (3.13 a )  

q ( s ,  0 )  = H.(O) - Bm2U4(s, 0). (3.13b) 

Matching will be used later to determine V, and Y, at the surface in terms of the 
first-order boundary-layer solution. Then the second-order outer solution pro- 
vides Uz(s, 0) ,  and (3 .10a)  and ( 3 . 1 0 ~ )  give 

(3 .14a)  

(3.14b) 
G(S, 0)  = BI(0) T&, 0) - 9 ( S >  0) UZ(4 01, 
%(s, 0)  = H;(O) Y&, 0)  -m2U,(s, 0)  U2(S, 0). 



168 Milton Van Dyke 

Writing (3.3a) and (3.3b) in the (s, n) co-ordinates and evaluating them at the 
surface gives two of the required normal derivatives: 

Kn(s, 0)  = - r;id[r$ &(s, o]/ds, 

P&, 0)  = .U;(s, 0). 

(3.15 a )  

(3.15b) 

The other two are found by differentiating (3.9a) and ( 3 . 9 ~ )  and using (3.15b) and 
the fact that Yln(s, 0)  = r$ Ul(s, 0):  

U J S ,  0 )  = BB;(O) I jo  - K q ( s ,  01, 

Tl,(s,O) = Ul(s, 0 )  [HB;(0)r$-BB;(O)mz"ri,+mz~&(s,O)J. 

(3.16 a )  

(3.16 b)  

3.5. Inner expansion 

The outer expansion violates the conditions on velocity and temperature at the 
wall. It is therefore invalid within the boundary layer, whose dimensionless 
thickness is (for finite (i and s) of order R-4. Following Prandtl, we magnify the 
normal co-ordinate accordingly by introducing the boundary-layer variable 

N = R h .  (3.17) 

The normal velocity and stream function are likewise small in the boundary 
layer, and must be magnified similarly. Then Prandtl's boundary-layer approxi- 
mation is obtained by letting R become infinite with the inner variables s and N 
fixed. Repeated application of this inner or Prandtl limit, in conjunction with an 
appropriate sequence of functions of R, produces the inner expansion. For an 
analytic semi-infinite body free of separation this sequence is believed to consist 
again of negative half powers. Thus the inner expansion is 

(3.18) 

Later we shall use also the inner expansion for the stream function 

$(s, n; R)  N R-*@l(s, N )  + R-l$z(s, N )  + . . .. (3.19) 

Substituting into (2.1), (2.2) and (2.6) gives for the first approximation the 

( 3 . 2 0 ~ ~ )  

(3.20b) 

( 3 . 2 0 ~ )  
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where letter subscripts indicate differentiation, and for the second approximation 

( 4 ~ ~ ) ~  + (ri u2)N = - [r&j cos O/ro) Nu,], - [&K +j  cos O/r0) Nu,],, (3.21 a )  

= K ( N u , ~ ~ + u , ~ -  N U ~ U ~ , ~ - U , V ~ ) +  (jcosO/r,) ulN, (3 .21b)  

P2N = KUtY ( 3 . 2 1 ~ )  

u1 u2s + u2 %s + u1 u2N + u2 ulN +P%- u2NN 

(3 .21d)  

(Alternative forms of the non-homogeneous right-hand sides are related through 
the first-order equations.) 

The requirement of zero velocity at the surface gives the boundary conditions 

ul(s,  0) = ul(s, 0 )  = u2(s, 0) = u2(s, 0 )  = 0. (3 .22)  

One condition is to be imposed on the temperature at  the body; for example, 
prescribing its (dimensionless) value as T,(s) gives 

4 ( s ,  0)  = Tlw(s), t2(s, 0 )  = 0,  (3 .23a)  

whereas requiring an insulated surface gives 

O) = $2,(&7 = O> (3 .23  6 )  

etc. The upstream conditions will not in general be satisfied by the inner expansion. 

3.6. Matching conditions 

Insufficient boundary conditions are available except for the first outer problem. 
The missing conditions are supplied by matching the inner and outer expansions. 
Whereas at low Reynolds numbers a generalized matching principle is required, 
here it suffices to apply the restricted matching principle (Lagerstrom 1957) 

m-term inner expansion of (p-term outer expansion) 
= p-term outer expansion of (m-term inner expansion). (3 .24)  

Matching conditions for the classical boundary layer are found by taking 
m = p = 1. The one-term outer expansion of u is U,(s, n);  rewriting it in inner 
variables gives U,(s, R-gN); and expanding for large R (assuming analyticity) 
gives U,(s, 0) as its one-term inner expansion. Conversely, one term of the inner 
expansion is ul(s, N ) ;  rewriting in outer variables gives u,(s, R h ) ;  and expanding 
for large R gives ul(s,  co) as its one-term outer expansion. Equating these results, 
and proceeding similarly with p and T gives the matching conditions 

( 3 . 2 5 ~ ~ )  

(3.25 b )  

( 3 . 2 5 ~ )  
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These are recognized as the classical conditions that at the outer edge of the 
boundary layer the tangential velocity, pressure, and temperature approach the 
inviscid surface values. 

Matching w in the same way gives 

wlN(s, co) = - r;id[r$ Ul(s, O]/ds, (3 .26)  

which is superfluous because it follows from (3 .25a)  by continuity. However, a 
useful result is obtained by taking instead m = 2,  p = 1 ,  which gives 

K(s, 0 )  = lim (v, - Nv,,). 
N+w 

( 3 . 2 7 ~ )  

The quantity on the right can be evaluated from the classical boundary-layer 
solution, being related to its displacement thickness. This is a matching condition 
for the second-order outer flow, which is often called the flow due to displacement 
thickness. An equivalent condition on the stream function is obtained using 
r$ K(s, 0 )  = - dY2(s, O)/ds, or directly by matching $ in the same way: 

y2(s7 0 )  = - lim (If$,, - $,I. (3 .273)  
N+LC 

These both have the physical interpretation that the displacement effect of the 
boundary layer upon the outer flow is that of a surface distribution of sources; 
this appears to be more fundamental than the concept of a displacement thickness. 

Finally, matching conditions for the second-order boundary-layer problem 
are found by taking m = p = 2 in (3.24).  Using also (3 .15)  and (3 .16)  leads to 

u2(s7 N ,  ( 3 . 2 8 ~ )  

p2('7 N ,  A, N K U q ( s ,  f p2(s7 O ) ,  (3 .283)  

( 3 . 2 8 ~ )  

as N -+ co, where P2(s, 0 )  and T'(s, 0 )  are given by (3.14).  The remainders are 
known to be exponentially small, so that the asymptotic forms (3.28),  like their 
first-order counterparts (3 .15) ,  are in fact approached more rapidly than any 
power of N-l (though this is not essential to the matching). 

N I B ; ( o )  r$ - KU1(s, o)] + u2(s7 O ) ,  

t2(s, N )  - NU,($, 0)  [H;(O) r{ -m2B;(0) ?$ + m2~U,(s, O ) ]  + T2(s, 0 ) ,  

4. First- and second-order boundary-layer problems 
4.1. First-order boundary layer 

Equation ( 3 . 2 0 ~ )  shows thatp, is constant across the boundary layer, and (3 .25b)  
gives its value as Pl(s, 0) ,  which is known from ( 3 . 1 3 ~ ) .  Thus (3.20) become the 
classical boundary-layer equations : 

(r$ul)s+ (dV1)N = 0,  ( 4 . 1 ~ )  

( 4 . l b )  U ~ U I ~ + V ~ U ~ N - U ~ N N  = Ul(s, 0)  UiAs, 01, 
a 2  

a " )  a i v  (8, z& + w, (t,  + gmzuz,) - - ( c r - I t ,  + *m2Uq) = 0. ( 4 . 1 ~ )  
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The corresponding boundary conditions are given by (3.22),  (3.23),  (3.25) and 
(3.13b) as 

u,(s, 0)  = Vl(S, 0)  = 0, ( 4 . 2 a )  

t,(s, 0)  = TW(s), tlN(s, 0 )  = 0, or the like, (4 .2b)  

( 4 . 2 ~ )  

For an insulated wall and Prandtl number unity the energy equation (4.1 c )  has 
the Busemann-Crocco integral 

(4.3) 

ul(s, co) = U,(s, O ) ,  tl(8, co) = H1(O) - +m2u:(s, 0). 

t ,  + &m2u: = H,(O). 

4.2. Second-order boundary layer 

Integrating the normal-momentum equation (3.21 c )  with respect to N and using 
the matching condition (3.28b) to evaluate the function of integration gives the 
increment in pressure within the boundary layer as 

where R2(s, 0 )  is given by ( 3 . 1 4 ~ ) .  Hence the second-order pressure gradient that 
appears in (3.21 b)  is 

The three terms on the right are the result of longitudinal curvature, interaction 
of displacement and external vorticity, and change in inviscid surface speed due to 
displacement . 

Substituting (4 .5)  into (3 .21)  gives the second-order boundary-layer equations: 

( T i  'UZ)~ + (4 V Z ) N  = - [?$(j COS O/ro) NU,], - [?$(K +j COS O/ro) NV~]N,  (4.6 a )  

ulu2s + u2uls + w1 U2N + v2 ulN - u2NN = K( + U1N - %IN - u1 

---K NU:(s,O)+ { U ~ ( S , O ) - U ~ ( S , N ) ) ~ N  + ( ~ C O S O / ~ ~ ) U , N  
as J: 1 a [  

(4 .6b)  
d + B;(O) dl u s ,  0 )  + & Ul(S, 0) U,(s,O), 

a 
(t1+@&2uq)-m2 

a 
aN + ( j cos O/ro) - ( r 1 t 1  + &m2u:). ( 4 . 6 ~ )  
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The boundary conditions are given by (3.22),  (3.23) and (3.28) as 

u2(s, 0 )  = v2(s, 0 )  = 0,  ( 4 . 7 a )  

t2(s, 0 )  = 0, tSN(87 0)  = 0, or the like, (4 .7b)  

(4 .7c)  

t2(s, N )  N NU,(s, 0 )  [H;(O) r$ - m2B;(0) r& +m2-KUl(s, O ) ]  

+H;(0)Y2(s,0)-m2U1(s,0) U2(s,O). ( 4 . 7 4  

u2(s, N )  N N[B;(O) r$ - d 1 ( s ,  O)] + U2(s, 0)  as N --f co, 

4.3. Use of stream function 

In  specific applications it is convenient to work with the stream function. The 
continuity equations (4.1 a) ,  (4 .6a )  are satisfied by introducing first- and second- 
order stream functions $,, $2 according to 

'6% = $ I N ,  '6.1 = - @ls7 ( 4 . 8 a )  

r$[u2 + (j cos O/ro) Nu,] = @ 2 N ,  ri,[v2 + ( K  +j cos O/ro) Nv,] = - @2$7 (4.8b) 

these being just the components of the inner expansion (3.19) for $. The first- 
order boundary-layer problem then becomes for the velocity field 

(4.9b) 

( 4 . 9 4  

(4.10a)  
t 1 ( s 7  0)  = TW(s), tlN(s, 0) = 0, or the like, ( 4 .  l o b )  

( 4 . 1 0 ~ )  tl(s7 co) = Hl(0)  - +m2U;(s, 0). 

The corresponding second-order problems are 
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and 

t,(s, 0 )  = 0, tZN(s,O) = 0,  or the like, (4.12b) 
t,(s, N )  N NUl(s, 0 )  [ B ; ( O )  r$ - mzB;(0) 4 + m%U1(s, O)] 

+ [ ~ ; ( 0 ) ~ z ( s ,  0 )  -m2Ul(s, 0 )  UZ(s7 O ) ] .  (4.12 c)  

The skin friction is given by 

T = ( ~ U , ~ ) R - ) T ~ ~ [ $ ~ ~ N ( S , O ) + R - ~ $ ~ N N ( ~ , O ) +  ... I, (4.13) 

and the heat transfer from the surface by 

p = - ( k q / L )  R B [ t l N ( 8 ,  0 )  + R-+tzN(s, 0) + . . .]. (4.14) 

4.4. Decomposition of second-order problem 
Because the second-order boundary-layer problem is linear we can, following the 
suggestion of Rott & Lenard (1959),  subdivide it into a number of simpler 
problems, each of which has a clear physical interpretation. To this end, all non- 
homogeneous terms have been written on the right. 

Consider the problem (4.11) for the velocity field. The non-homogeneous terms 
fall into two main categories. Those proportional to K and j arise from curvature 
of the body surface. The remainder arise from the displacement effect of the first- 
order boundary layer upon the outer flow, which is reflected in second-order 
changes in the pressure and temperature a t  the outer edge of the boundary layer, 
given by (3.14). 

It is sometimes convenient to subdivide further these two categories, although 
this secondary decomposition is somewhat arbitrary. Of the curvature terms, 
those in K are present in either plane or axisymmetric flow, and represent the 
effects of longitudinal curvature. Those i n j  must be added in axisymmetric flow, 
and are therefore said to arise from transverse curvature. In  the terms associated 
with displacement of the outer flow, Uz(s, 0 )  is the change induced in the speed at 
the outer edge of the boundary layer; we shall call its effect that of displacement 
speed. Terms proportional to B;(O) represent, according to (3.9 b), the direct 
effects of external vorticity in the basic oncoming stream. (Vorticity has also an 
indirect effect in that it influences every component of the solution, beginning 
with the basic inviscid flow. The linear effect isolated here simply shows the effect 
of external vorticity if the outer surface speed is held fixed.) 

The second-order stream function can therefore be subdivided into four com- 

(4.15a) 
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(with corresponding expressions for u2, v2 and p,) .  Here the superscripts identify 
respectively the contributions of longitudinal curvature, transverse curvature, 
external vorticity, and displacement speed. 

In  the problem for the temperature field, the first term on the right of ( 4 . 1 2 ~ )  
may be interpreted physically as the change in convected stagnation enthalpy 
that results from the modification of streamlines. Substituting ( 4 . 1 5 ~ )  suggests 
that t2 may be subdivided just as was. However, a new effect arises from the 
terms proportional to H;(O), which represent the effect of a stagnation enthatpy 
gradient in the oncoming stream. Thus the temperature is separated into five 
components by setting 

t, = t p  + j t p  + q ( 0 )  t p  + H;(O) t$H)  + t p .  (4.15 b )  

(Components proportional to B,(O) and H2(0) would also appear if the oncoming 
stream depended on Reynolds number.) Substituting these decompositions into 
the second-order problem leads to an individual problem for each of the five 
effects enumerated. 

The individual matching conditions can, like their first-order counterparts 
(4 .2c) ,  be imposed at N = 00, provided that N is first removed by differentiation 
if it appears explicitly. Thus in the problem for displacement speed, ( 4 . 1 1 ~ )  
gives immediately 

$i$ (s,0O) = TI! u, ( S , O ) ,  (4.16) 

whereas for external vorticity one obtains first 

$ g ( s ,  N )  N Nr:j + o( 1 )  as N -+ co. ( 4 . 1 7 ~ )  

Now the fact expressed by the second term, that there is no term of order unity, 
follows from the first term and the differential equation (because of the sub- 
stitution therein of (4 .5 ) ) .  Therefore the condition may be simplified to 

$gN(s, 00) = rEj. (4.17 b )  

For an insulated wall and Prandtl number unity, the individual energy equa- 
tions for the problems of transverse curvature, external vorticity and displace- 
ment speed have the integral 

t2+m2u,u, = 0.  (4.18) 

An alternative way of separating vorticity and displacement effects is of 
interest. The penultimate term in (4 .6  b)  or (4.11 a) ,  which represents the 
pressure gradient arising from interaction of displacement and vorticity, 
may be regarded as a displacement rather than a vorticity effect. Adding it 
to the problem for displacement speed gives what we shall call the problem for 
the effect of displacement pressure. Then external vorticity retains only a 
kinematic role, through its appearance in the matching condition (4.7~) or 
(4.11 c )  ; we shall refer to this as the kinematic effect of external vorticity. The com- 
ponent matching conditions (4.16) and (4.17) remain unaltered. 

Most previous investigators of external vorticity have adopted (at least 
tacitly) this alternative subdivision involving displacement pressure rather 
than displacement speed, so that they calculate only the kinematic effect of 
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vorticity. Unfortunately, as will be discussed in detail in Part 2, those investi- 
gators who have also considered displacement effects have usually overlooked 
the additional effect of vorticity in inducing a pressure perturbation. 

For example, Hayes (1956) has suggested that in the problem for external 
vorticity the matching condition for the stream function is to be found by 
eliminating n between $ and $n in the basic inviscid flow. This leads, with 
( 4 . 1 7 ~ )  assumed, to 

instead of (4.16) for the displacement effect. Comparison with ( 3 . 1 4 ~ )  shows 
that this condition corresponds to neglecting the second-order pressure per- 
turbation P2(s, 0)  at the edge of the boundary layer. Thus Hayes’ condition is 
correct for the kinematic effect of vorticity, but incorrect for the remaining 
effect of displacement unless the induced pressure perturbation P’(5, 0 )  happens 
to  vanish. 

The effect of displacement speed is much harder to calculate than the others, 
because it alone requires the determination of the outer flow due to displacement. 
(The effects of external vorticity and stagnation enthalpy gradient involve V, 
and T2, but only at the surface, where they are given in terms of the classical 
boundary-layer solution by (3.27).) The displacement-speed effect is therefore 
global, whereas the others are local. Only through it does the elliptic nature of 
the Navier-Stokes equations reassert itself in the boundary layer, having been 
suppressed in Prandtl’s equations, which are parabolic and therefore permit no 
upstream influence. 

4.5. Change of co-ordinates 
The outer solution is independent of the choice of co-ordinate system (so that the 
equations governing it can be written in vector form). On the other hand, the 
classical boundary-layer solution is known to depend upon the choice of co- 
ordinates, in a manner that has been studied by Kaplun (1954). Because it is 
often convenient to use boundary-layer co-ordinates other than the present (s, n) 
system, we extend some of Kaplun’s results to second order. 

Consider a general co-ordinate system (t, 7) that need not be orthogonal, but 
for convenience is such that the body is described by a co-ordinate line 

$kW, a) = B; (0) riY,(s, O)/Ul (s, O ) ,  

7 = qo = const. 
The transformation 6 = <(s,n), 7 = q(s,n) is assumed regular, so that near the 
body 

(4.19) 

Introduce the magnified inner variable H related to 7 as N is to n: 

H = R%(q--q0). (4.20) 

Corresponding to the inner expansion (3.18) in the (s, n)-co-ordinates, we seek an 
inner expansion in the new co-ordinates of the form 

(4.21) 
u N .iil(g,H)+R+.ii,(t,H)+ ..., 
2, N R-3 51( g, H )  + B-%,( g, H )  + . . . , 
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and similarly for p ,  T ,  and $. Expressing (g, H )  here in terms of (s, N )  by means 
of (4.19) and (3.17),  expanding in Taylor series for large R, and equating to (3.18) 
gives the desired result : 

Ul@, fl) = w%% 01, Nrln(s7 011, 
'u,(s, N )  = .iizr 1 + N u s ,  0 )  .iiqr 1 + QN2Vnn(S,  0)  .ii;l,[ I, 

( 4 . 2 2 ~ )  

(4.226) 

with completely analogous relations for v1 and o,, t ,  and t,, and $1 and $2. 

The first of these is Kaplun's correlation theorem, which relates the classical 
boundary-layer solutions in any two co-ordinate systems, and the second is its 
counterpart in second-order boundary-layer theory. The boundary-layer 
problems in the new co-ordinate system are found by substituting (4.22) into 
(4.8)-(4.12),  and using the transformation (4.19) and its inverse. 

Kaplun has shown how, from the flow due to displacement thickness, one can 
determine certain optimal co-ordinates in which the classical boundary-layer 
solution is valid also in the outer flow. This idea could be extended to the second 
approximation. Alternatively, a single uniformly-valid composite expansion 
can, if required, be formed from the inner and outer expansions (cf. Kaplun & 
Lagerstrom 1957). 

4.6. Behaviour fur downstream 

The present analysis gives an asymptotic solution for large Reynolds number 
that is uniformly valid for finite distances from the nose of the body. However, 
it  may become invalid far downstream in some cases. Thus Prandtl's boundary- 
layer approximation becomes invalid as s + co if the boundary-layer thickness 
6(s) grows faster than either the longitudinal or transverse radius of curvature of 
the body; that is, if either 6(s) K ( S )  or S(s)/r,(s) is unbounded. The first possibility 
does not ordinarily arise in problems of interest; for example, for a parabola or 
paraboloid in a uniform stream, 6~ vanishes like s-l. However, the second 
possibility may be realized in axisymmetric flow, as for uniform flow past a body 
that grows more slowly than a paraboloid. 

The remedy in the first approximation is to replace ( 4 . l a )  and (4 .1b)  by 
Millikan's (1 932) boundary-layer equations 

(rul)s+ (rvl)N = O ,  ( 4 .23a)  

~ iu iS+ vi U ~ N  - U ~ N N  - ( r ~ i r )  UN = ui(s, 0)  UlAs, 0). (4.23 b)  

These are valid far downstream because the radius r(s, n)  = r,,(s) + n cos O(s) has 
not been approximated by its value r, at the surface. Thus the effect of transverse 
curvature, which can grow from second to first order, is included in the leading 
approximation. With this as a basis, one could revise the preceding analysis to 
construct either a uniformly-valid inner expansion, or a supplementary one for 
large s. The leading term has been studied in the case of a circular cylinder by 
Seban & Bond (1951), Glauert & Lighthill (1955),  and Stewartson (1955, 1957). 

The displacement effect is uniformly small if SK remains bounded, but external 
vorticity leads to non-uniformity downstream. The reason is that the vorticity 
in the boundary layer is attenuated downstream by diffusion, so that eventually 
it is not large compared with the external vorticity. Again the remedy would be 
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to include the effect in the first approximation. This can in principle be accom- 
plished by repeating the matching that led to (3.25) with the understanding that 
N may be large. The result is tractable, however, only for the semi-infinite flat 
plate, which has been treated asymptotically by Ting (1960). 

This work draws heavily on discussions and correspondence with many 
colleagues, including S. Goldstein, J.-P. Guiraud, W. D. Hayes, S. Kaplun, N. 
Kemp, P. A. Lagerstrom, K. Mangler, R. Mark, N. Rott and J. T. Stuart. The 
earlier stages of the work were carried out a t  the Lockheed Missiles and 
Space Company. 
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